Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Rev Genet ; 25(2): 142-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37749210

RESUMEN

Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.


Asunto(s)
Farmacorresistencia Bacteriana , Salud Única , Animales , Humanos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Genómica , Animales Salvajes
2.
Nat Commun ; 14(1): 4830, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563113

RESUMEN

Serial intervals - the time between symptom onset in infector and infectee - are a fundamental quantity in infectious disease control. However, their estimation requires knowledge of individuals' exposures, typically obtained through resource-intensive contact tracing efforts. We introduce an alternate framework using virus sequences to inform who infected whom and thereby estimate serial intervals. We apply our technique to SARS-CoV-2 sequences from case clusters in the first two COVID-19 waves in Victoria, Australia. We find that our approach offers high resolution, cluster-specific serial interval estimates that are comparable with those obtained from contact data, despite requiring no knowledge of who infected whom and relying on incompletely-sampled data. Compared to a published serial interval, cluster-specific serial intervals can vary estimates of the effective reproduction number by a factor of 2-3. We find that serial interval estimates in settings such as schools and meat processing/packing plants are shorter than those in healthcare facilities.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Genómica , Trazado de Contacto , Victoria
3.
Lancet Reg Health West Pac ; 25: 100487, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35677391

RESUMEN

Background: COVID-19 has affected many healthcare workers (HCWs) globally. We performed state-wide SARS-CoV-2 genomic epidemiological investigations to identify HCW transmission dynamics and provide recommendations to optimise healthcare system preparedness for future outbreaks. Methods: Genome sequencing was attempted on all COVID-19 cases in Victoria, Australia. We combined genomic and epidemiologic data to investigate the source of HCW infections across multiple healthcare facilities (HCFs) in the state. Phylogenetic analysis and fine-scale hierarchical clustering were performed for the entire dataset including community and healthcare cases. Facilities provided standardised epidemiological data and putative transmission links. Findings: Between March-October 2020, approximately 1,240 HCW COVID-19 infection cases were identified; 765 are included here, requested for hospital investigations. Genomic sequencing was successful for 612 (80%) cases. Thirty-six investigations were undertaken across 12 HCFs. Genomic analysis revealed that multiple introductions of COVID-19 into facilities (31/36) were more common than single introductions (5/36). Major contributors to HCW acquisitions included mobility of staff and patients between wards and facilities, and characteristics and behaviours of patients that generated numerous secondary infections. Key limitations at the HCF level were identified. Interpretation: Genomic epidemiological analyses enhanced understanding of HCW infections, revealing unsuspected clusters and transmission networks. Combined analysis of all HCWs and patients in a HCF should be conducted, supported by high rates of sequencing coverage for all cases in the population. Established systems for integrated genomic epidemiological investigations in healthcare settings will improve HCW safety in future pandemics. Funding: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.

4.
Microorganisms ; 9(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576866

RESUMEN

Tetrahymena rostrata is a free-living ciliated protozoan and is a facultative parasite of some species of terrestrial mollusks. It is a potential biopesticide of pest slugs, such as the grey field slug, which cause considerable damage to crops. T. rostrata has several developmental forms. Homogeneous preparations of the feeding stage cells (trophonts) and excysted stage cells (theronts) were compared for their ability to infect and kill Deroceras reticulatum slugs. Theronts were more effective and remained viable and infective, even after prolonged starvation.

5.
Vet Microbiol ; 250: 108856, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33007607

RESUMEN

Respiratory infections caused by Actinobacillus pleuropneumoniae have a large impact on commercial pig farms globally. As current vaccines have limited efficacy, animal care and air hygiene are critical for disease control. Here we used a Coriolis µ cyclonic air sampler and an A. pleuropneumoniae-specific apxIV gene qPCR assay to detect the organism. Air samples were collected into a liquid medium by the Coriolis µ sampler for A. pleuropneumoniae detection by plate culture and qPCR assay. The method was validated by comparing the Coriolis µ sampler and a plate impactor (Millipore Air-T) in a specially designed aerosolization chamber. Two commercial farms, housing pigs between 3 and 21 weeks of age, were tested. On one farm, A. pleuropneumoniae was detected in low numbers (1000 organisms/m3 air) by qPCR, but not by culture, from sheds containing 8, 12, 16, and 18 weeks-old pigs. To our knowledge this is the first successful detection of naturally aerosolised A. pleuropneumoniae in commercial farms with the Coriolis µ air sampler, potentially allowing the identification of sub-clinically infected populations of pigs in the field.


Asunto(s)
Infecciones por Actinobacillus/veterinaria , Actinobacillus pleuropneumoniae/aislamiento & purificación , Aerosoles/análisis , Microbiología del Aire , Granjas , Infecciones por Actinobacillus/diagnóstico , Infecciones por Actinobacillus/microbiología , Actinobacillus pleuropneumoniae/genética , Crianza de Animales Domésticos , Animales , Anticuerpos Antibacterianos/sangre , Australia , Femenino , Masculino , Pleuroneumonía/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos/microbiología , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/microbiología
6.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29572210

RESUMEN

An unknown member of the family Pasteurellaceae was repeatedly isolated from 20- to 24-week-old pigs with severe pulmonary lesions reared on the same farm in Victoria, Australia. The etiological diagnosis of the disease was inconclusive. The complete genome sequence analysis of one strain, 15-184, revealed some phylogenic proximity to Glaesserella (Haemophilus) parasuis, the cause of Glasser's disease. However, the sequences of the 16S rRNA and housekeeping genes, as well as the average nucleotide identity scores, differed from those of all other known species in the family Pasteurellaceae The protein content of 15-184 was composite, with 60% of coding sequences matching known G. parasuis products, while more than 20% had a closer relative in the genera Actinobacillus, Mannheimia, Pasteurella, and Bibersteinia Several putative virulence genes absent from G. parasuis but present in other Pasteurellaceae were also found, including the apxIII RTX toxin gene from Actinobacillus pleuropneumoniae, ABC transporters from Actinobacillus minor, and iron transporters from various species. Three prophages and one integrative conjugative element were present in the isolate. Horizontal gene transfers might explain the mosaic genomic structure and atypical metabolic and virulence characteristics of 15-184. This organism has not been assigned a taxonomic position in the family, but this study underlines the need for a large-scale epidemiological and clinical characterization of this novel pathogen in swine populations, as a genomic analysis suggests it could have a severe impact on pig health.IMPORTANCE Several species of Pasteurellaceae cause a range of significant diseases in pigs. A novel member of this family was recently isolated from Australian pigs suffering from severe respiratory infections. Comparative whole-genome analyses suggest that this bacterium represents a new species, which possesses a number of virulence genes horizontally acquired from a diverse range of other Pasteurellaceae While the possible contribution of other coinfecting noncultivable agents to the disease has not been ruled out in this study, the repertoire of virulence genes found in this organism may nevertheless explain some aspects of the associated pathology observed on the farm. The prevalence of this novel pathogen within pig populations is currently unknown. This finding is of particular importance for the pig industry, as this organism can have a serious impact on the health of these animals.


Asunto(s)
Transferencia de Gen Horizontal , Genoma Bacteriano , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/genética , Infecciones del Sistema Respiratorio/veterinaria , Factores de Virulencia/genética , Animales , Australia , Proteínas Bacterianas/genética , Infecciones por Haemophilus/microbiología , Haemophilus parasuis/aislamiento & purificación , Haemophilus parasuis/patogenicidad , Filogenia , ARN Ribosómico 16S/genética , Infecciones del Sistema Respiratorio/microbiología , Porcinos/microbiología , Enfermedades de los Porcinos/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...